Plasmonic Lenses

نویسندگان

  • Yongqi Fu
  • Jun Wang
  • Daohua Zhang
چکیده

The resolution of almost all conventional optical system is indispensably governed by the diffraction limit. This resolution limit can be overcome by use of focusing the evanescent waves in the near field region. The concept of “superlens” was proposed firstly by Pendry in 2000 [1]. When ε= -1and μ= -1, the negative refractive index material plate can be a perfect lens [2-4]. Because of the dispersion and absorption in the materials, the conditions of ε= 1and μ= -1 is hard to satisfy for the natural materials. Although the perfect lens may not exist, the superlens which can provide higher resolution beyond the diffraction limit have been proved. And focusing by means of surface plasmon polarisons (SPPs) by plasmonic lens is attracting much interest recently due to its unique feature of extraordinary enhanced transmission [5-8]. It means that we can focus the evanescent components of an illuminated object in the near-field region with subdiffraction-limit resolution [9]. This allows them to break the conventional barrier of diffraction limit, and leads to the formation of concentrated sub-wavelength light spots on the order of nanometers. Plasmonic lens is always consisted by metal and dielectric and can excite SPPs and always can be used for focusing, imaging, and beam shaping and so on.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Focusing surface plasmons with a plasmonic lens.

We report the focusing of surface plasmon polaritons by circular and elliptical structures milled into optically thick metallic films or plasmonic lenses. Both theoretical and experimental data for the electromagnetic nearfield is presented. The nearfield is mapped experimentally using nearfield scanning optical microscopy and plasmonic lithography. We find that the intensity at the focal point...

متن کامل

Beam bending via plasmonic lenses.

We have designed and characterized three different types of plasmonic lenses that cannot only focus, but can also bend electromagnetic (EM) waves. The bending effect is achieved by constructing an asymmetric phase front caused by varying phase retardations in EM waves as they pass through a plasmonic lens. With an incident wave normal to the lens surface, light bends up to 8° off the axial dire...

متن کامل

Control the dispersive properties of compound plasmonic lenses

We propose novel compound plasmonic lenses, which consist of metal–insulator–metal waveguides (MIMWGs) and phase zone plates (PZPs), with controllable dispersive properties. Numerical simulation results show that this new type of compound plasmonic lens is capable of not only minimizing the chromatic aberration but also rearranging the order of focal positions for incident light at visible freq...

متن کامل

Plasmonic Luneburg and Eaton lenses.

Plasmonics takes advantage of the properties of surface plasmon polaritons, which are localized or propagating quasiparticles in which photons are coupled to the quasi-free electrons in metals. In particular, plasmonic devices can confine light in regions with dimensions that are smaller than the wavelength of the photons in free space, and this makes it possible to match the different length s...

متن کامل

Systematic study of the focal shift effect in planar plasmonic slit lenses.

In this paper, we systematically studied the focal shift effect in planar plasmonic slit lenses. Through theoretical derivations and numerical simulations, we found that there is a focal length shift between the traditional design model and the finite-difference time-domain simulations. The shift is not only dependent on the Fresnel number (FN) of the lens, like traditional dielectric lenses, d...

متن کامل

Focusing light into deep subwavelength using metamaterial immersion lenses.

We propose and demonstrate metamaterial immersion lenses by shaping plasmonic metamaterials. The convex and concave shapes for the elliptically and hyperbolically dispersive metamaterials are designed using phase compensation method. Numerical simulations verify that the metamaterial immersion lenses possess exceptionally large effective numerical apertures thus can achieve deep subwavelength r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012